提供图像采集卡,工业图像采集卡,相机采集卡,pcie扩展卡usb3.0工业网卡等咨询13602504526

机器视觉硬件选型及应用

机器视觉技术 2022-05-18 11:30:29807www.dapeir.com机器视觉网

机器视觉,逐渐渗入社会生活的方方面面,在人脸识别,图片识别,视频监控,3D应用的各领域,几乎都能看到机器视觉的身影。对工业领域而言,机器视觉的应用更是大大降低了高危作业的危险系数,保障了工业生产的安全性和高效性。机器视觉是人工智能范畴最重要的前沿分支,也是智能制造装备的关键零部件,他在工业生产中应用广泛,包括视觉引导与定位,识别,测量,检测等,随便工业数字化,智能化的逐渐深入,工业场景对机器视觉的需求不断增加,推动了机器视觉蓬勃发展。

硬件选型

1、光源的选择

光源是基础,打光是艺术。一个好的打光效果,基本决定了视觉检测成功的一大半。光源的合理性选择,直接影响了输入图像数据的质量与应用效果。针对每个不同的应用案例与环境,需要选择相应的光源与合理的照明方式,以求达到最好的应用效果。

1.光源可分为可见光和不可见光;常用的几种可见光源有LED灯、萤光灯、卤素灯(光纤光源)、特殊光源。

LED 灯:

• 使用寿命约10000-30000小时。

• 可以使用多个LED达到高亮度,同时可组合不同的形状;

• 响应速度快,波长可以根据用途选择,制成不同的颜色。

萤光灯:

• 使用寿命大约1500-3000小时;

• 优点:扩散性好、适合大面积均匀照射;

• 缺点:响应速度慢,亮度较暗。

光纤卤素灯:

• 使用寿命大约1000小时;

• 优点:亮度高;

• 缺点:响应速度慢,几乎没有光亮度和色温的变化。

按照射方式不同可分为背向照明、前向照明、结构光和频闪光照明等。

背向照明是被测物放在光源和摄像机之间,它的优点是能获得高对比度的图像,图像效果为黑白分明的被测物轮廓,常用于尺寸测量;前向照明是光源和摄像机位于被测物的同侧,这种方式便于安装,主要用于检测物体表面的重要细节特征、缺陷和划痕。结构光照明是将光栅或线光源等投射到被测物上,根据它们产生的畸变,解调出被测物的三维信息。频闪光照明是将高频率的光脉冲照射到物体上,摄像机拍摄要求与光源同步。

按照照明方式可分为穹形光源、环形光源、平行光源、同轴光源、点光源、低角度光源、线光源、光栅等。选择光源的角度:根据期望的图像效果,选择不同入射角度的光源。

穹形光源,主要用于球型或曲面物体的缺陷检测、不平坦的光滑表面字符的检测、金属或镜面的表面检测。

环形光照射,多用于集成电路料带与管脚字符、金属工件刻印字符、光滑表面划痕、瓶口尺寸或裂痕、平面工件表面质量检测。

条形光源(可控照明,红色,蓝色,绿色单色光源)也叫条形灯是一种从侧面打光的照明光源,常用的角度是45度,也有更小的角度。侧光灯可以避免正面照射产生的强烈反光,同时还可以对边缘部分实现高亮的照明。是一种在尺寸测量、外观检测方面应用非常广泛的一种照明方式。

同轴光照射,图像效果为明亮背景上的黑色特征,用于反光厉害的平面物体检测,能够加强有差异角度的表面特征,增强表面纹理(划痕、凹陷、压印),减少阴影。

高角度照射,图像整体较亮,适合表面不反光物体;

低角度照射,图像背景为黑,特征为白,可以突出被测物轮廓及表面凹凸变化;

多角度照射,图像整体效果较柔和,适合曲面物体检测;

选择光源的形状和尺寸:主要分为圆形、方形和条形。通常情况下选用与被测物体形状相同的光源,最终光源形状以测试效果为准。光源的尺寸选择,要求保障整个视野内光线均匀,略大于视野比较好。

选择是否用漫射光源:如被测物体表面反光,最好选用漫反射光源。多角度的漫射照明使得被测物表面整体亮度均匀,图像背景柔和,检测特征不受背景干扰。

选光源的一些技巧:需要前景与背景更大的对比度,可以考虑用黑白相机与彩色光源;环境光的问题,尝试用单色光源,配一个滤镜;闪光曲面,考虑用散射圆顶光;闪光,平的,但粗糙的表面,尝试用同轴散射光;看表面的形状,考虑用暗视场(低角度);

2、相机的选择

工业相机按照芯片类型:可以分为CCD相机、CMOS相机;

按照输出色彩可以分为单色(黑白)相机、彩色相机;

按照传感器的结构特性可以分为线阵相机(黑白摄像机、3Line彩色相机、3CCD彩色相机(分光棱镜)、面阵相机(黑白摄像机、Bayer彩色相机、3CCD彩色相机(分光棱镜);

按照输出信号方式可以分为模拟相机(PAL(黑白为CCIR))、NTSC(黑白为EIA))、数字相机(IEEE1394、USB2.0、Camera Link、GigE);

按照扫描方式可以分为隔行扫描相机、逐行扫描相机;

按照分辨率大小可以分为普通分辨率相机、高分辨率相机;

按照输出信号速度可以分为普通速度相机、高速相机;

按照响应频率范围可以分为可见光(普通)相机、红外相机、紫外相机等。

(2)相机的主要参数:①分辨率;②速度(帧频/行频);③噪声;④信噪比;⑤动态范围;⑥像元深度;⑦光谱响应;⑧光学接口。

1. 分辨率是相机最基本的参数,由相机所采用的芯片分辨率决定,是芯片靶面排列的像元数量。在采集图像时,相机的分辨率对图像质量有很大的影响。在对同样大的视场(景物范围)成像时,分辨率越高,对细节的展示越明显。

2.相机的帧频/行频表示相机采集图像的频率,通常面阵相机用帧频表示,单位 fps(Frame Per second),相机采集传输图像的速率,对于面阵相机一般为每秒采集的帧数(Frames/Sec.),对于线阵相机为每秒采集的行数(Lines/Sec.)。

3.相机的噪声是指成像过程中不希望被采集到的,实际成像目标外的信号。第二类是相机自身固有的与信号无关的噪声,它是由图像传感器读出电路、相机信号处理与放大电路等带来的噪声,每台相机的固有噪声都不一样。另外,对数字相机来说,对视频信号进行模拟转换时会产生量化噪声,量化位数越高,噪声越低。

4. 相机的信噪比定义为图像中信号与噪声的比值(有效信号平均灰度值与噪声均方根的比值),代表了图像的质量,图像信噪比越高,图像质量越好

5.相机的动态范围表明相机探测光信号的范围,动态范围可用两种方法来界定,一种是光学动态范围,指饱和时最大光强与等价于噪声输出的光强的比值,由芯片的特性决定。另一种是电子动态范围,是指饱和电压和噪声电压之间的比值。对于固定相机其动态范围是一个定值,不随外界条件变化而变化。

6.数字相机输出的数字信号,即像元灰度值,具有特殊的比特位数,称为像元深度。即每像素数据的位数,一般常用的是8Bit,对于数字相机机一般还会有10Bit、12Bit、14Bit等。对于黑白相机这个值的方位通常是 8-16bit。像元深度定义了灰度由暗道亮的灰阶数。

7.光谱响应是指相机对于不同波长光线的响应能力,通常指其所采用芯片的光谱响应。通常用光谱曲线表示,横轴表示不同波长,纵轴表示量子效率。按照响应光谱不同也把相机分为可见光相机(400nm—1000nm,峰值在 500nm—600nm 之间),红外相机(响应波长在 700nm 以上),紫外相机(可以响应到 200nm—400nm的短波),我们需要根据接收被测物发光波长的不同来选择不同的光谱响应的相机。

8. 光学接口是指相机与镜头之间的借口,常用的镜头的借口有 C 口,CS 口,F 口。下表提供了关于镜头安装及后焦距的信息。其中 M42 镜头适配器源于高端摄像标准。另一方面,相机的 Z 轴均依据所提供的适配器而进行了优化,一般情况下不要轻易拆卸镜头适配器。

如何选择工业相机

根据检测任务的不同、产品的大小、需要达到的分辨率以及所用软件的性能可以计算出所需工业相机的分辨率;现场环境最要考虑的是温度、湿度、干扰情况以及光照条件来选择不同的工业相机。

考虑待观察或待测量物体的精度,根据精度选择工业相机分辨率。

相机像素精度=单方向视野范围大小/相机单方向分辨率。

则相机单方向分辨率=单方向视野范围大小/理论精度。

3、镜头的选择

工业相机镜头由多个透镜、可变(亮度)光圈和对焦环组成。如下图所示,在使用时由操作者观察相机显示屏来调整可变光圈和焦点,以确保图像的明亮程度及清晰度(有些镜头有固定调节系统)。

镜头的接口尺寸是有国际标准的,共有三种接口型式,即F型、C型、CS型,其他有M42、莱卡、哈苏、AK。F型接口是通用型接口,一般适用于焦距大于25mm的镜头;而当物镜的焦距约小于25mm时,因物镜的尺寸不大,便采用C型或CS型接口。

C接口和CS接口的区别:

①C与CS接口的区别在于镜头与摄像机接触面至镜头焦平面(摄像机 CCD光电感应器应处的位置)的距离不同,C型接口此距离为17.526mm,CS型接口此距离为12.5mm。

② C型镜头与C型摄像机,CS型镜头与CS型摄像机可以配合使用。C型镜头与CS型摄像机之间增加一个 5mm的C/CS转接环可以配合使用。CS型镜头与C型摄像机无法配合使用。

(2)工业镜头的基本参数

镜头选择应注意:①焦距 ②目标高度 ③影像高度 ④放大倍数 ⑤影像至目标的距离 ⑥中心点/节点 ⑦畸变。

<1>视场(Field of view,即FOV,也叫视野范围):指观测物体的可视范围,也就是充满相机采集芯片的物体部分。(视场范围是选型中必须要了解的)

<2>工作距离(Working Distance,即WD):指从镜头前部到受检验物体的距离。即清晰成像的表面距离(选型必须要了解的问题,工作距离是否可调?包括是否有安装空间等)。

<3> 分辨率:图像系统可以测到的受检验物体上的最小可分辨特征尺寸。在多数情况下,视野越小,分辨率越好。(在实际选择镜头时,镜头尺寸不能小于相机芯片尺寸,一定要要大于或等于相机芯片尺寸)

影响分辨率的主要因素:镜头结构、材质、加工精度等。

其它因素:镜头光圈越大,分辨率越高;光波长度,波长越短分辨率越高;同档次的固定焦距镜头比变焦镜头分辨率高;短焦镜头一般边缘分辨率比中心低;长焦镜头一般中心比边缘分辨率低。

<4> 景深(Depth of view,即DOF):物体离最佳焦点较近或较远时,镜头保持所需分辨率的能力(需要了解客户对景深是否有特殊要求?)景深和镜头的焦距、光圈、物距有关:光圈越小,景深越大;拍摄距离越大,景深越大;焦距越短,景深越大。

<5> 焦距(f):是光学系统中衡量光的聚集或发散的度量方式,指从透镜的光心到光聚集之焦点的距离。亦是照相机中,从镜片中心到底片或CCD等成像平面的距离。(需要记住的重要公式)f = {工作距离/视野范围长边(或短边)}*CCD长边(或短)

焦距大小的影响情况:焦距越小,景深越大;焦距越小,畸变越大;焦距越小,渐晕现象越严重,使像差边缘的照度降低。像差是影响图像质量的重要方面,常见的像差有如下六种:球差、慧差、像散、场曲、畸变、色差。

<6> 光圈与F值:光圈是一个用来控制镜头通光量装置,它通常是在镜头内。表达光圈大小我们是用F值。

<7> 感光芯片尺寸:相机感光芯片的有效区域尺寸,一般指水平尺寸。这个参数对于决定合适的镜头缩放比例以获取想要的视场非常重要。镜头主要缩放比例 (PMAG) 由感光芯片的尺寸和视场的比率来定义。虽然基本参数包括感光芯片的尺寸和视场,但PMAG却不属于基本参数。

<8> 光学放大倍数:用于计算主要缩放比例的公式如下:PMAG = CCD Size / FOV

显示放大倍数:显示放大倍率在显微中应用非常广泛,被测物体的显示放大倍率取决于三个因素:镜头光学倍率、工业相机感光芯片的尺寸(靶面大小)、显示器尺寸。

(3)镜头的分类

为了适应不同的应用场合,镜头有多种类型,从不同的角度,就有不同的划分方法:

按光学放大倍率及焦距划分:

a、显微镜:体视显微镜、生物显微镜、金相显微镜、测量显微镜

b、常规镜头:鱼眼镜头:6-16mm;超广角镜头:17-21mm;广角镜头:24-35mm;标准镜头:45-75mm;长焦镜头:150-300mm;超长焦镜头:300mm以上

c、特殊镜头:微距镜头,远距镜头,远心镜头,红外镜头,紫外镜头

按其它性能划分:固定焦距镜头;变焦镜头:自动变焦手动变焦;

不同接口方式的镜头:C接口(后截距17.526mm),CS接口(后截距12.5mm),F接口(尼康口),M42

其它:哈苏、徕卡、AK

各种镜头常用配件:近拍接圈,偏振镜,滤色片,UV镜,雷登镜,增温镜,各色滤镜,带通滤镜,增倍镜,分光镜,棱镜

Copyright © 2022 图像采集卡-机器视觉网 All Rights Reserved.

粤ICP备19092327号-3 商务合作:13602504526 XML地图